Newton iterations in implicit time-stepping scheme for differential linear complementarity systems

نویسندگان

  • Xiaojun Chen
  • Shuhuang Xiang
چکیده

We propose a generalized Newton method for solving the system of nonlinear equations with linear complementarity constraints in the implicit or semi-implicit time-stepping scheme for differential linear complementarity systems (DLCS). We choose a specific solution from the solution set of the linear complementarity constraints to define a locally Lipschitz continuous right-hand-side function in the differential equation.Moreover,wepresent a simple formula to compute an element in the Clarke generalized Jacobian of the solution function. We show that the implicit or semi-implicit time-stepping scheme using the generalized Newton method can be applied to a class of DLCS including the nondegenerate matrix DLCS and hidden Z-matrix DLCS, and has a superlinear convergence rate. To illustrate our approach, we show that choosing the least-element solution from the solution set of the Z-matrix linear complementarity constraints can define a Lipschitz continuous right-hand-side function with a computable Lipschitz constant. The Lipschitz constant helps us to choose the step size of the time-stepping scheme and guarantee the convergence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A General Solution for Implicit Time Stepping Scheme in Rate-dependant Plasticity

In this paper the derivation of the second differentiation of a general yield surface implicit time stepping method along with its consistent elastic-plastic modulus is studied. Moreover, the explicit, trapezoidal implicit and fully implicit time stepping schemes are compared in rate-dependant plasticity. It is shown that implementing fully implicit time stepping scheme in rate-dependant plasti...

متن کامل

An Implicit Time-Stepping Method for Multibody Systems with Intermittent Contact

In this paper we present an implicit time-stepping scheme for multibody systems with intermittent contact by incorporating the contact constraints as a set of complementarity and algebraic equations within the dynamics model. Two primary sources of stability and accuracy problems in prior time stepping schemes for differential complementarity models of multibody systems are the use of polyhedra...

متن کامل

A parallel explicit/implicit time stepping scheme on block-adaptive grids

We present a parallel explicit/implicit time integration scheme well suited for blockadaptive grids. The basic idea of the algorithm is that the time stepping scheme can differ in the blocks of the grid for a given time step: an explicit scheme is used in the blocks where the local stability requirement is not violated and an implicit scheme is used in the blocks where the explicit scheme would...

متن کامل

A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).

This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...

متن کامل

Numerical valuation of options under Kou’s model

Numerical methods are developed for pricing European and American options under Kou’s jump-diffusion model which assumes the price of the underlying asset to behave like a geometrical Brownian motion with a drift and jumps whose size is log-double-exponentially distributed. The price of a European option is given by a partial integro-differential equation (PIDE) while American options lead to a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 138  شماره 

صفحات  -

تاریخ انتشار 2013